Processing of satellite observations satellites/std
#
Description#
The present plugin manages satellite observations. This includes:
applying averaging kernel formulae
unfolding satellite levels to individual observations to extract proper levels from models
vertically interpolating simulated values to averaging kernels’ pressure levels
optionally, for domains not extending to the top of the atmosphere, fetching stratospheric concentrations from another dataset
The satellites
transform is triggered according to keywords in the yml file.
In the datavect
paragraph, one should format a satellites
paragraph as
follows:
The stratosphere
paragraph is optional and is required only with the option
fill_strato
.
Note
The detailed expected satellite observation file format is explained here.
YAML arguments#
The following arguments are used to configure the plugin. pyCIF will return an exception at the initialization if mandatory arguments are not specified, or if any argument does not fit accepted values or type:
Mandatory arguments#
- formula : 1 or 2 or 3 or 4 or 5 or 8 or 10, mandatory
Number of the formula to use to apply the averaging kernels. Here is the detail of each variable:
\(nlevsat\) the number of levels of the satellite,
\(y\) the equivalent of the satellite data,
\(y^s\) the simulated concentrations interpolated on these levels,
\(\Delta P_i\) the pressure thicknesses of these levels [remark: if the thicknesses are not provided directly, this implies that the pressures for the sides of the levels are provided, including the surface pressure for the bottom of the lowest level],
\(y^0_i\) the prior concentrations on these levels (prior profile),
\(ak_i\) the averaging kernels and if relevant,
\(chosenlev\) the number of the level of the chosen partial column.
Available formulae are:
1: Formula 1: \(y= \frac{\sum_{i=1}^{nlevsat}y^s_i \Delta P_i ak_i}{\sum_{i=1}^{nlevsat}\Delta P_i ak_i}\)
2: Formula 2: \(y= \sum_{i=1}^{nlevsat}y^s_i ak_i\)
3: Formula 3: \(y= 10^{\left(\log y^0_{chosenlev}+\sum_{i=1}^{nlevsat}(\log y^s_i-\log y^0_i)ak_i\right)}\)
4: Formula 4: \(y= \sum_{i=1}^{nlevsat}y^s_i ak_i 10^3\)
5: Formula 5: \(y= \frac{y^0+\sum_{i=1}^{nlevsat}ak_i(y_{dry,i}^s.dryair_i-y^0_i)}{dryair_{tot}}\)
8: Formula 8: \(y= \sum_{i=1}^{nlevsat} \left( ak_i(y_i^s - y^0_i) \right) + y^0_{chosenlev}\)
10: Formula 10: \(y= \sum_{i=1}\{ [y^0_i +\ ( y^s_i- y^0_i \) ak_i\ ] pwgt\}\)
- molmass : float, mandatory
If fill_strato is True and product is column, molar mass (in g) of the species whose field is read in the stratosphere files.
Optional arguments#
- parameter : str, optional
Parameter name on which the transform works on
- component : str, optional
Component name on which the transform works on
- orig_parameter_plg : Plugin, optional
Plugin object on which the transform works on
- orig_component_plg : Plugin, optional
Corresponding component object on which the transform works on
- successor : str, optional
Name of the successor transform
- precursor : str, optional
Name of the precursor transform
- ignore_formula : bool, optional, default False
Ignore the given formula number and directly use the individual options (see below):
log_space
precomputed_pwgt
use_prior
unit_scaling
normalize_columns
use_drycols
scale_dpressure
- product : “level” or “column”, optional, default “level”
Type of product
“level”: Levels in ppb
“column”: Total column in molec.cm-2.
- pressure : “hPa” or “Pa”, optional, default “hPa”
Unit for the pressure levels
“hPa”: hectoPascals
“Pa”: Pascals
- vinterp_type : “weight” or “linear”, optional, default “weight”
Type of vertical interpolation
“weight”: pressure weighted interpolation
“linear”: linear interpolation between middles of cells
- weights_nsubsteps : float, optional, default 20
Number of sub step for target levels to do the weighted interpolation. The smaller the step, the higher the precision
- nchunks : int, optional, default 50
Number of chunks for the application of averaging kernels. Averaging kernels are applied by chunks and not observation by observation to accelerate computation. Chunks should not be too small, neither too large. As a rule of thumb, chunks of a few hundreds to one thousand observations are working fine. Smaller chunks loose the advantage of chunk-based computations, while too big chunks can overload your memory. For very low number of observations, 1-2 chunks are sufficient;For big datasets, one should test different number (a few tens is typically recommended)
- cropstrato : bool, optional, default False
Cropping stratospheric averaging kernels. All averaging kernels above the top of the model are excluded. Warning: for domain-limited domain, if cropstrato is False, the top-most value from the model is interpolated to the top of the atmosphere, potentially biasing results (not recommended)
- fill_strato : int, optional, default False
Filling stratosphere from a global model (temporary implemetation)
- correct_pthick : bool, optional, default False
Correct for the thickness of the column. Due to topography and surface pressure approximations and errors in the model, the total column of air is never exactly the same between observations and the model. For that reason, a correcting factor can be applied to scale the thickness of the model column to make it fit the observed column
- chosenlev : int, optional, default -1
For formula type #3, level at which the equivalent of the observation are computed. Counting starts at 0.
- split_tropo_strato : bool, optional, default False
Compute separately the contribution from the stratosphere and the troposphere for debugging purpose
- unit_scaling : float, optional, default 1
Re-scale aks using a given scaling factor
- log_space : bool, optional, default False
Apply averaging kernels in a log space
- precomputed_pwgt : bool, optional, default False
Use pre-computed pressure weights
- use_prior : bool, optional, default False
Use a prior profile
- use_drycols : bool, optional, default False
Use dry air columns to scale simulations
- scale_dpressure : bool, optional, default False
Scale simulated level by pressure thickness
- normalize_columns : bool, optional, default False
Normalize total columns according to aks and pressure weights, or drycols if use_drycols = True
- level_based : bool, optional, default False
Averaging kernel pressure levels are defined at the middle (True) of levels, hence with n values, or at the interface (‘False’), hence with n+1 values
- force_dump_sim_aks : bool, optional, default False
Force dump the full dataframe before applying aks for debugging purposes
YAML template#
Please find below a template for a YAML configuration:
1transform:
2 plugin:
3 name: satellites
4 version: std
5 type: transform
6
7 # Mandatory arguments
8 formula: XXXXX # 1|2|3|4|5|8|10
9 molmass: XXXXX # float
10
11 # Optional arguments
12 parameter: XXXXX # str
13 component: XXXXX # str
14 orig_parameter_plg: XXXXX # Plugin
15 orig_component_plg: XXXXX # Plugin
16 successor: XXXXX # str
17 precursor: XXXXX # str
18 ignore_formula: XXXXX # bool
19 product: XXXXX # level|column
20 pressure: XXXXX # hPa|Pa
21 vinterp_type: XXXXX # weight|linear
22 weights_nsubsteps: XXXXX # float
23 nchunks: XXXXX # int
24 cropstrato: XXXXX # bool
25 fill_strato: XXXXX # int
26 correct_pthick: XXXXX # bool
27 chosenlev: XXXXX # int
28 split_tropo_strato: XXXXX # bool
29 unit_scaling: XXXXX # float
30 log_space: XXXXX # bool
31 precomputed_pwgt: XXXXX # bool
32 use_prior: XXXXX # bool
33 use_drycols: XXXXX # bool
34 scale_dpressure: XXXXX # bool
35 normalize_columns: XXXXX # bool
36 level_based: XXXXX # bool
37 force_dump_sim_aks: XXXXX # bool