Obsparsers obsparser#
Available Obsparsers obsparser#
The following obsparsers are implemented in pyCIF so far:
- CO2M pseudo_data
CO2M/pseudo_data - Integrated Carbon Observing System (ICOS) data
ICOS/std - NOAA-ESRL Observation Package (ObsPack) Data Products
obspack/std - TROPOMI XCH4 retrievals – Official RPRO product
TROPOMI/CH4-RPRO - TROPOMI XCH4 retrievals – Official product
TROPOMI/CH4-official - TROPOMI XCH4 retrievals from SRON
TROPOMI/CH4-SRON - TROPOMI XCH4 retrievals from the University of Bremen
TROPOMI/CH4-WFMD - TROPOMI-GOSAT XCH4 retrievals from Balasus
TROPOMI/CH4-BLENDED - Template plugin for observation parsers
template/std - VERIFY/std
VERIFY/std - WDCGG/std
WDCGG/std
Documentation#
Description#
The obsparser (Observation Parser) class parses and formats raw observation
files into the standard pyCIF observations format
(see here for details).
obsparser objects are called by the
standard/std
measurement object.
Required parameters, dependencies and functions#
do_parse#
- pycif.plugins.obsparsers.template.do_parse(self, obs_file, **kwargs)[source]
Parse function for a file from template observations
- Args:
- obs_file (str) :
Path to input file
- Returns:
- pandas.DataFrame :
Dataframe from input file df[parameter][station]
parse_multiple_files (optional)#
The parse_multiple_files is defined by default in the ObsParser class.
It loops on files fitting a path pattern and parses them individually by calling the
function do_parse.
If files cannot be processed individually, the function parse_multiple_files
should be implemented in the corresponding obsparser plugin.
It should return the dataframe with all required observations.
- class pycif.utils.classes.obsparsers.ObsParser(plg_orig=None, orig_name='', **kwargs)[source]#
Class for handling time series parsing from different data providers and data file formats.
- parse_multiple_files(**kwargs)[source]
Parses multiple files specified by a glob pattern and stores the content into a datastore.
- Args:
self: the plugin with its describing arguments (in particular dir_obs)
- Returns:
dict: {obs_file} = df[obssite_id, parameter]
- Note:
By default, the function calls self.parse_file, which filters out NaNs and check that all required columns are available.