Obsparsers (obsparser
)¶
Contents
Available Obsparsers (obsparser
)¶
The following obsparsers
are implemented in pyCIF so far:
- Integrated Carbon Observing System (ICOS) data (
ICOS
/std
) - NOAA-ESRL Observation Package (ObsPack) Data Products (
obspack
/std
) - TROPOMI XCH4 retrievals – Official product (
TROPOMI
/CH4-official
) - TROPOMI XCH4 retrievals from SRON (
TROPOMI
/CH4-SRON
) - TROPOMI XCH4 retrievals from the University of Bremen (
TROPOMI
/CH4-WFMD
) - Template plugin for observation parsers (
template
/std
) VERIFY
/std
WDCGG
/std
Description¶
The obsparser
(Observation Parser) class parses and formats raw observation
files into the standard pyCIF observations format
(see here for details).
obsparser
objects are called by the
standard/std
measurement
object.
Required parameters, dependencies and functions¶
do_parse¶
- pycif.plugins.obsparsers.template.do_parse(self, obs_file, **kwargs)[source]
Parse function for a file from template observations
- Parameters
obs_file (str) – Path to input file
- Returns
Dataframe from input file df[parameter][station]
- Return type
pandas.DataFrame
parse_multiple_files (optional)¶
The parse_multiple_files
is defined by default in the ObsParser
class.
It loops on files fitting a path pattern and parses them individually by calling the
function do_parse
.
If files cannot be processed individually, the function parse_multiple_files
should be implemented in the corresponding obsparser
plugin.
It should return the dataframe with all required observations.
- class pycif.utils.classes.obsparsers.ObsParser(plg_orig=None, **kwargs)[source]¶
Class for handling time series parsing from different data providers and data file formats.
- parse_multiple_files(**kwargs)[source]
Parses multiple files specified by a glob pattern and stores the content into a datastore.
- Parameters
self – the plugin with its describing arguments (in particular dir_obs)
- Returns
{obs_file} = df[obssite_id, parameter]
- Return type
dict
Note
By default, the function calls self.parse_file, which filters out NaNs and check that all required columns are available.