Temporal interpolation and re-indexing time_interpolation/std
#
YAML arguments#
The following arguments are used to configure the plugin. pyCIF will return an exception at the initialization if mandatory arguments are not specified, or if any argument does not fit accepted values or type:
Mandatory arguments#
- method : “linear”, mandatory
Method by which the original data is temporally interpolated onto the output time-scale
Optional arguments#
- parameter : str, optional
Parameter name on which the transform works on
- component : str, optional
Component name on which the transform works on
- orig_parameter_plg : Plugin, optional
Plugin object on which the transform works on
- orig_component_plg : Plugin, optional
Corresponding component object on which the transform works on
- successor : str, optional
Name of the successor transform
- precursor : str, optional
Name of the precursor transform
- recombine_periods : str, optional, default True
Recombine inputs from different sub-periods. If False, data overlapping several periods will be taken from the period with the biggest overlap with the outputs
- sparse_in : bool, optional, default False
Whether inputs are sparse data
- sparse_out : bool, optional, default False
Whether outputs are sparse data
YAML template#
Please find below a template for a YAML configuration:
1transform:
2 plugin:
3 name: time_interpolation
4 version: std
5 type: transform
6
7 # Mandatory arguments
8 method: XXXXX # linear
9
10 # Optional arguments
11 parameter: XXXXX # str
12 component: XXXXX # str
13 orig_parameter_plg: XXXXX # Plugin
14 orig_component_plg: XXXXX # Plugin
15 successor: XXXXX # str
16 precursor: XXXXX # str
17 recombine_periods: XXXXX # str
18 sparse_in: XXXXX # bool
19 sparse_out: XXXXX # bool